Skip to main content
Log in

Laccase Activity Assay Using Surface Plasmon Resonance Band of Gold Nanoparticles Formed by Dopamine

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A simple, fast, and sensitive colorimetric technique for determination of laccase activity using dopamine (DA) induced growth of colloidal gold nanoparticles is proposed. It was found that the reduction of AuCl4 to colloidal gold nanoparticles (AuNPs) by dopamine (DA) in the presence of citrate ion as stabilizing agent produced a very intense surface plasmon resonance peak of AuNPs at 530 nm. As the activity of laccase (at fixed concentration of DA) increases, the oxidation of DA to dopamine-o-quinone (DOQ) is enhanced. The latter product could not act as the reducing agent for the reduction of AuCl4 to AuNPs. So, as the activity of laccase increases, the absorbance characteristic to the plasmon of the AuNPs at 530 nm is diminished. This reductive mechanism of the plasmon absorbance of the AuNPs allows the quantitative colorimetric assay for laccase activity. The linear range of the method is 0.1–10 U ml−1 laccase. The developed method has been applied to assay laccase activity in 12 samples per hour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Singh G, Capalash N, Goel R, Sharma P (2007) A pH-stable laccase from alkali-tolerant γ-proteobacterium JB: purification, characterization and indigo carmine degradation. Enzym Microb Technol 41:794–799

    Article  CAS  Google Scholar 

  2. Yuan J, Guo W, Wang E (2008) Utilizing a CdTe quantum dots−enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide. Anal Chem 80:1141–1145

    Article  CAS  PubMed  Google Scholar 

  3. Gianfreda L, Iamarino G, Scelza R, Rao MA (2006) Oxidative catalysts for the transformation of phenolic pollutants: a brief review. Biocatal Biotransform 24:177–187

    Article  CAS  Google Scholar 

  4. Shamsipur M, Shanehasz M, Khajeh KH, Mollania N, Kazemi SH (2012) A novel quantum dot-laccase hybrid nanobiosensor for low level determination of dopamine. Analyst 137:5553–5559

    Article  CAS  PubMed  Google Scholar 

  5. Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  6. Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C (2002) Crystal structure of a four-copper laccase complexed with an Arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41:7325–7333

    Article  CAS  PubMed  Google Scholar 

  7. Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2605

    Article  CAS  PubMed  Google Scholar 

  8. Sharma P, Goel R, Capalash N (2007) Bacterial laccases. World J Microbiol Biotechnol 23:823–832

    Article  CAS  Google Scholar 

  9. Mogharabi M, Faramarzi MA (2014) Laccase and laccase-mediated systems in the synthesis of organic compounds. Adv Synth Catal 356:897–927

    Article  CAS  Google Scholar 

  10. Xu F (2005) Applications of oxidoreductases: recent progress. Ind Biotech 1:38–50

    Article  CAS  Google Scholar 

  11. Civjan N (2012) Chemical biology: approaches to drug discovery and development to targeting disease. John Wiley & Sons

  12. Guo Z, Seol ML, Kim MS, Ahn JH, Choi YK, Liu JH, Huang XJ (2013) Sensitive and selective electrochemical detection of dopamine using an electrode modified with carboxylated carbonaceous spheres. Analyst 138:2683–2690

    Article  CAS  PubMed  Google Scholar 

  13. Kim YR, Bong S, Kang YJ, Yang Y, Mahajan RK, Kim JS, Kim H (2010) Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens Bioelectron 25:2366–2369

    Article  CAS  PubMed  Google Scholar 

  14. Peik-See T, Pandikumar A, Nay-Ming H, Hong-Ngee L, Sulaiman Y (2014) Simultaneous electrochemical detection of dopamine and ascorbic acid using an iron oxide/reduced graphene oxide modified glassy carbon electrode. Sensors 14:15227–15243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baron R, Zayats M, Willner I (2005) Dopamine-, L-DOPA-, adrenaline-, and noradrenaline-induced growth of au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Anal Chem 77:1566–1571

    Article  CAS  PubMed  Google Scholar 

  16. Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426

    Article  CAS  Google Scholar 

  17. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34:257–264

    Article  CAS  PubMed  Google Scholar 

  18. Templeton AC, Wuelfing WP, Murray RW (2000) Monolayer-protected cluster molecules. Acc Chem Res 33:27–36

    Article  CAS  PubMed  Google Scholar 

  19. Liao S, Qiao Y, Han W, Xie Z, Wu ZH, Shen G, Yu R (2012) Acetylcholinesterase liquid crystal biosensor based on modulated growth of gold nanoparticles for amplified detection of acetylcholine and inhibitor. Anal Chem 84:45–49

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, Peng H, Huang W, Zhou Y, Yan D (2008) Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. Colloid Interface Sci 325:371–376

    Article  CAS  Google Scholar 

  21. Perez Y, Mann E, Herradon B (2011) Preparation and characterization of gold nanoparticles capped by peptide–biphenyl hybrids. Colloid Interface Sci 359:443–453

    Article  CAS  Google Scholar 

  22. El-Batal AI, ElKenawy NM, Yassin AS, Amin MA (2015) Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol Reports 5:31–39

    Article  Google Scholar 

  23. Faramarzi MA, Forootanfar H (2011) Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloid Surf 87:23–27

    Article  CAS  Google Scholar 

  24. XIE X, XU W, LIU X (2012) Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification. Acc Chem Res 45:1511–1520

    Article  CAS  PubMed  Google Scholar 

  25. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hormozi-Nezhad MR, Tashkhourian J, Khodaveisi J (2010) Sensitive spectrophotometric detection of dopamine, levodopa and adrenaline using surface plasmon resonance band of silver nanoparticles. J Iran Chem Soc 7:83–91

    Article  Google Scholar 

  27. Sun Y, Xia Y (2003) Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst 128:686–691

    Article  CAS  PubMed  Google Scholar 

  28. McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3:1057–1062

    Article  CAS  Google Scholar 

  29. Alberts JF, Gelderblom WCA, Botha A, Vanzyl WH (2009) Degradation of aflatoxin B1 by fungal laccase enzymes. Int J Food Microbiol 135:47–52

    Article  CAS  PubMed  Google Scholar 

  30. Lu L, Zhao M, Zhang BB, Yu SY, Bian XJ, Wang W, Wang Y (2007) Purification and characterization of laccase from Pycnoporus sanguineus and decolorization of an anthraquinone dye by the enzyme. Appl Microbiol Biotechnol 74:1232–1239

    Article  CAS  PubMed  Google Scholar 

  31. Simpson RJ (2003) Proteins and proteomics: a laboratory manual, first edn. CSHL Press, New York, pp 857–859

    Google Scholar 

  32. Shakibaie M, Forootanfar H, Mollazadeh-Moghaddam K, Bagherzadeh Z, Nafissi-Varcheh N, Shahverdi AR, Faramarzi MA (2010) Green synthesis of gold nanoparticles by the marine microalga Tetraselmis suecica. Biotechnol Appl Biochem 57:71–75

    Article  CAS  PubMed  Google Scholar 

  33. Kalishwaralal K, Gopalram S, Vaidyanathan R, Deepak V, Pandian SRK, Gurunathan S (2010) Optimization of α-amylase production for the green synthesis of gold nanoparticles. Colloid Surf B 77:174–180

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the support of this work by the Sharif University of Technology Research Council as well as the Shiraz University Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Absalan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashangeh, K., Hormozi-Nezhad, M.R., Akhond, M. et al. Laccase Activity Assay Using Surface Plasmon Resonance Band of Gold Nanoparticles Formed by Dopamine. Plasmonics 13, 1409–1415 (2018). https://doi.org/10.1007/s11468-017-0645-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0645-7

Keywords

Navigation